指点成金-最美分享吧

登录

浅谈Cauchy不等式

佚名 举报

篇首语:本文由小编为大家整理,主要介绍了浅谈Cauchy不等式相关的知识,希望对你有一定的参考价值。

形式

[sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2 geq sum_{i=1}^{n}a_i^{2}b_i^2]

等号成立的条件:
[iff:b_i=0 || exists k in mathbb {R},a_i=k cdot b_i(i in mathbb{N^+})]

证明

法一:参数配方

思路:巧妙的把常数与方程结合起来,利用性质即可。

证明:

构造函数:
[f(t)=sum_{i=1}^{n}b_i^2cdot t^2-2sum_{i=1}^{n}a_ib_it+sum_{i=1}^{n}a_i^2]
化简函数:
[f(t)=sum_{i=1}^{n}b_i^2cdot t^2-2sum_{i=1}^{n}a_ib_it+sum_{i=1}^{n}a_i^2]

[=sum_{i=1}^{n}(b_i^2t^2-2a_ib_it+a_i^2)]

[=sum_{i=1}^{n}(b_i^2t^2+a_i^2-2a_ib_it)]

[=sum_{i=1}^{n}(b_it-a_i)^2]

所以:
[f(t) geq 0]

[Delta t=b^2-4ac]

[=4sum_{i=1}^{n}a_i^2b_i^2-4imes sum_{i=1}^{n}b_i^2 imes sum_{i=1}^{n}a_i^2 leq 0]

所以:
[4sum_{i=1}^{n}a_i^2b_i^2 leq 4imes sum_{i=1}^{n}b_i^2 imes sum_{i=1}^{n}a_i^2]

[sum_{i=1}^{n}a_i^2 imes sum_{i=1}^{n}b_i^2 geq sum_{i=1}^{n}a_i^2b_i^2]

证毕。

因为:
[f(t)=sum_{i=1}^{n}(b_it-a_i)^2]
(f(t)=0),即
[a_i=b_it]
此时:
[f(t)_{min}=0?]
即:
[Delta t leq 0]
故等号可取的一个充分条件即为:
[exists k in mathbb {R},a_i=k cdot b_i(i in mathbb{N^+})]

法二:均值不等式证明

思路:运用分析法将原式子化简,使用绝对值三角不等式与均值不等式进行证明。

引用到的均值不等式(证明略):
[ab leq frac{a^2+b^2}{2}]
适用条件:
[a,b in mathbb {R^+}]
等号成立条件:
[iff:a=b]

证明:

要证:
[sum_{i=1}^{n}a_i^2sum_{i=1}^{n}b_i^2 geq sum_{i=1}^{n}a_i^{2}b_i^2]
开方得:
[sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2} geq |sum_{i=1}^{n}a_ib_i|]
只需证:
[|sum_{i=1}^{n}a_ib_i| leq sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2}]

[frac{|sum_{i=1}^{n}a_ib_i|}{sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2}}leq 1]

由绝对值三角不等式:
[|a_1+a_2+a_3+cdots+a_n| leq |a_1|+|a_2|+|a_3|+ cdots + |a_n|]
可得:
[|sum_{i=1}^{n}a_ib_i| leq sum_{i=1}^{n}|a_ib_i|]
所以:
[frac{|sum_{i=1}^{n}a_ib_i|}{sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2}} leq frac{sum_{i=1}^{n}|a_ib_i|}{sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2}}]
又因为:
[frac{sum_{i=1}^{n}|a_ib_i|}{sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2}}]

[=sum_{i=1}^{n}frac{|a_i|}{sqrt{sum_{i=1}^{n}a_i^2}}cdot frac{|b_i|}{sqrt{sum_{i=1}^{n}b_i^2}}]

由均值不等式:
[ab leq frac{a^2+b^2}{2}]
可得:
[sum_{i=1}^{n}frac{|a_i|}{sqrt{sum_{i=1}^{n}a_i^2}}cdot frac{|b_i|}{sqrt{sum_{i=1}^{n}b_i^2}}]

[leq frac{1}{2}cdot sum_{i=1}^{n}(frac{a_i^2}{sum_{i=1}^{n}a_i^2}+ frac{b_i^2}{sum_{i=1}^{n}b_i^2})]

[leq frac{1}{2}cdot (frac{sum_{i=1}^{n}a_i^2}{sum_{i=1}^{n}a_i^2}+ frac{sum_{i=1}^{n}b_i^2}{sum_{i=1}^{n}b_i^2})]

[leq frac{1}{2} imes 2 = 1]

即:
[frac{|sum_{i=1}^{n}a_ib_i|}{sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2}}leq 1]

[|sum_{i=1}^{n}a_ib_i| leq sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2}]

[sqrt {sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2} geq |sum_{i=1}^{n}a_ib_i|]

[sum_{i=1}^{n}a_i^2 sum_{i=1}^{n}b_i^2 geq sum_{i=1}^{n}a_i^{2}b_i^2]

证毕。

法三:n维向量证法

因为:
[|vec a cdot vec b| leq |vec a|cdot |vec b|]
所以:
[|vec a cdot vec b|^2 leq |vec a|^2cdot |vec b|^2]
(vec a,vec b)(n)维向量时,用坐标的形式展开即可证明。

(vec a=kvec b),即(a)(b)共线时,等号成立。

申明与感谢

  • 内容采用“知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议”进行许可。请您在转载时注明来源及链接。
  • 感谢@thorn的审稿。

以上是关于浅谈Cauchy不等式的主要内容,如果未能解决你的问题,请参考以下文章